266 research outputs found

    Electrically Conductive Cotton Textile and Its Applications

    Get PDF
    Electronic textiles (e-textiles) have been considered as important applications in wearable electronics, which can combine the functionality of smart electronic devices with the comfort and flexibility of stylish clothing. Herein, we have successfully prepared a conductive textile via electroless deposition onto cotton textiles by using a three-step treatment process. The cotton textiles are first dipped in P4VP-SU8 solution to form a uniform layer for the subsequent absorption of silver ions. Then, the cotton textiles are immersed in silver nitrate solution in preparation for the next step electroless deposition. The sheet resistance can be as low as 0.05 Ωsq-1. Two sensors were made based on the copper coated cotton textiles. One is flexible pressure sensor, the other is ECG sensor. Both sensors performed well, proving this method is a promising candidate for applications in the fabrication of functional textile-based wearable devices

    Sub-pixel change detection for urban land-cover analysis via multi-temporal remote sensing images

    Get PDF
    Conventional change detection approaches are mainly based on per-pixel processing, which ignore the sub-pixel spectral variation resulted from spectral mixture. Especially for medium-resolution remote sensing images used in urban land-cover change monitoring, land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution. Thus, traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably, degrading the overall accuracy of change detection. In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level, a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion. Nonlinear spectral mixture model is selected for spectral unmixing, and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple compositi..

    The Next-Generation Surgical Robots

    Get PDF
    The chronicle of surgical robots is short but remarkable. Within 20 years since the regulatory approval of the first surgical robot, more than 3,000 units were installed worldwide, and more than half a million robotic surgical procedures were carried out in the past year alone. The exceptionally high speeds of market penetration and expansion to new surgical areas had raised technical, clinical, and ethical concerns. However, from a technological perspective, surgical robots today are far from perfect, with a list of improvements expected for the next-generation systems. On the other hand, robotic technologies are flourishing at ever-faster paces. Without the inherent conservation and safety requirements in medicine, general robotic research could be substantially more agile and explorative. As a result, various technical innovations in robotics developed in recent years could potentially be grafted into surgical applications and ignite the next major advancement in robotic surgery. In this article, the current generation of surgical robots is reviewed from a technological point of view, including three of possibly the most debated technical topics in surgical robotics: vision, haptics, and accessibility. Further to that, several emerging robotic technologies are highlighted for their potential applications in next-generation robotic surgery

    A conceptional approach of resin-transfer-molding to rosin-sourced epoxy matrix green composites†

    Get PDF
    In this concept-proof study, a preform-based RTM (Resin Transfer Molding) process is presented that is characterized by first pre-loading the solid curing agent onto the preform, and then injecting the liquid nonreactive resin with an intrinsically low viscosity into the mold to infiltrate and wet the pre-loaded preform. The separation of resin and hardener helped to process inherently high viscosity resins in a convenient way. Rosin-sourced, anhydrite-cured epoxies that would normally be regarded as unsuited to liquid composite molding, were thus processed. Rheological tests revealed that by separating the anhydrite curing agent from a formulated RTM resin system, the remaining epoxy liquid had its flowtime extended. C-scan and glass transition temperature tests showed that the preform pre-loaded with anhydrite was fully infiltrated and wetted by the liquid epoxy, and the two components were diffused and dissolved with each other, and finally, well reacted and cured. Composite laminates made via this approach exhibited roughly comparable quality and mechanical properties with prepreg controls via autoclave or compression molding, respectively. These findings were verified for both carbon and ramie fiber composites
    • …
    corecore